103 research outputs found

    Evaluation of Kermeta for Solving Graph-based Problems

    Get PDF
    Kermeta is a meta-language for specifying the structure and behavior of graphs of interconnected objects called models. In this paper,\ud we show that Kermeta is relatively suitable for solving three graph-based\ud problems. First, Kermeta allows the specification of generic model\ud transformations such as refactorings that we apply to different metamodels\ud including Ecore, Java, and Uml. Second, we demonstrate the extensibility\ud of Kermeta to the formal language Alloy using an inter-language model\ud transformation. Kermeta uses Alloy to generate recommendations for\ud completing partially specified models. Third, we show that the Kermeta\ud compiler achieves better execution time and memory performance compared\ud to similar graph-based approaches using a common case study. The\ud three solutions proposed for those graph-based problems and their\ud evaluation with Kermeta according to the criteria of genericity,\ud extensibility, and performance are the main contribution of the paper.\ud Another contribution is the comparison of these solutions with those\ud proposed by other graph-based tools

    Kevoree Modeling Framework (KMF): Efficient modeling techniques for runtime use

    Get PDF
    The creation of Domain Specific Languages(DSL) counts as one of the main goals in the field of Model-Driven Software Engineering (MDSE). The main purpose of these DSLs is to facilitate the manipulation of domain specific concepts, by providing developers with specific tools for their domain of expertise. A natural approach to create DSLs is to reuse existing modeling standards and tools. In this area, the Eclipse Modeling Framework (EMF) has rapidly become the defacto standard in the MDSE for building Domain Specific Languages (DSL) and tools based on generative techniques. However, the use of EMF generated tools in domains like Internet of Things (IoT), Cloud Computing or Models@Runtime reaches several limitations. In this paper, we identify several properties the generated tools must comply with to be usable in other domains than desktop-based software systems. We then challenge EMF on these properties and describe our approach to overcome the limitations. Our approach, implemented in the Kevoree Modeling Framework (KMF), is finally evaluated according to the identified properties and compared to EMF.Comment: ISBN 978-2-87971-131-7; N° TR-SnT-2014-11 (2014

    Weaving Aspect Configurations for Managing System Variability

    Get PDF
    International audienceVariability management is a key concern in the software industry. It allows designers to rapidly propose applications that fit the environment and the user needs, with a certain Quality-of-Service level, by choosing adapted variants. While Aspect-Oriented Programming has been introduced for managing variability and complexity at the code level, the Software Product-Line community highlights the needs for variability in the earlier phases of the software lifecycle, where a system is generally described by means of models. In this paper, we propose a generic approach for weaving flexible and reusable aspects at a model level. By extending our generic Aspect-Oriented Modeling approach with variability, we can manage variability and complexity in the early phases of the software lifecycle

    When Systems Engineering Meets Software Language Engineering

    Get PDF
    International audienceThe engineering of systems involves many different stakeholders, each with their own domain of expertise. Hence more and more organizations are adopting Domain Specific Languages (DSLs) to allow domain experts to express solutions directly in terms of relevant domain concepts. This new trend raises new challenges about designing DSLs, evolving a set of DSLs and coordinating the use of multiple DSLs for both DSL designers and DSL users. This paper explores various dimensions of these challenges, and outlines a possible research roadmap for addressing them. The message of this paper is also to claim that if language engineering techniques to design any single (disposable) language are mature, the language engineering community needs to fundamentally change its view on software language design. We need to take the next step and adopt the perspective that a software language is, fundamentally, software too and thus the result of a composition of design decisions. These design decisions should be represented as first-class entities in the software languages workbench and it should be possible, during the language lifecycle, to add, remove and change language design decisions with limited effort to go from continuous design to continuous meta-design

    Matching Model-Snippets

    Get PDF
    International audienceAn important demand in Model-Driven Development is the simple and efficient expression of model patterns. Current approaches tend to distinguish the language they use to express patterns from the one for modelling. Consequently, productivity is reduced by dealing with a distinct new language, and new intermediate steps are introduced in order to support pattern-matching. In this paper we propose a frame- work for expressing patterns as model-snippets. We present how model- snippets are specified upon concepts in a given domain (meta-model), and how we perform pattern-matching with model-snippets, whatever the meta-model. We also provide an implementation which is well inte- grated with existing technologies, such as Eclipse Modelling Framework

    EntiMid : un middleware aux services de la maison

    Get PDF
    National audienceOne of the society challenges of tomorrow is the aging population. Often pointed as a possible solution for this issue, house automation can help elderly people stay at home as long as possible, and ease the coordination of the domain actors. In this context, this paper lists the requirements of such a system, showing that today's commercial solutions are not flexible enough to reach the necessary functional richness. According to these requirements, a set of properties a middleware should offer in order to be deployed at a city scale is identified. Then this paper describes the software architecture of a suitable middleware built over OSGi, respecting the listed properties. After that, an experience report of the deployment of this middleware, in the laboratory of the Université de Rennes 1 highlights the relevance of the proposed solution

    Customization and 3D Printing: A Challenging Playground for Software Product Lines

    Get PDF
    International audience3D printing is gaining more and more momentum to build customized product in a wide variety of fields. We conduct an exploratory study of Thingiverse, the most popular Website for sharing user-created 3D design files, in order to establish a possible connection with software product line (SPL) engineering. We report on the socio-technical aspects and current practices for modeling variability, implementing variability, configuring and deriving products, and reusing artefacts. We provide hints that SPL-alike techniques are practically used in 3D printing and thus relevant. Finally, we discuss why the customization in the 3D printing field represents a challenging playground for SPL engineering

    Kevoree (Model@Runtime pour le développement continu de systèmes adaptatifs distribués hétérogènes)

    Get PDF
    La complexité croissante des systèmes d'information modernes a motivé l'apparition de nouveaux paradigmes (objets, composants, services, etc), permettant de mieux appréhender et maîtriser la masse critique de leurs fonctionnalités. Ces systèmes sont construits de façon modulaire et adaptable afin de minimiser les temps d'arrêts dus aux évolutions ou à la maintenance de ceux-ci. Afin de garantir des propriétés non fonctionnelles (par ex. maintien du temps de réponse malgré un nombre croissant de requêtes), ces systèmes sont également amenés à être distribués sur différentes ressources de calcul (grilles). Outre l'apport en puissance de calcul, la distribution peut également intervenir pour distribuer une tâche sur des nœuds aux propriétés spécifiques. C'est le cas dans le cas des terminaux mobiles proches des utilisateurs ou encore des objets et capteurs connectés proches physiquement du contexte de mesure. L'adaptation d'un système et de ses ressources nécessite cependant une connaissance de son état courant afin d'adapter son architecture et sa topologie aux nouveaux besoins. Un nouvel état doit ensuite être propagé à l'ensemble des nœuds de calcul. Le maintien de la cohérence et le partage de cet état est rendu particulièrement difficile à cause des connexions sporadiques inhérentes à la distribution, pouvant amener des sous-systèmes à diverger. En réponse à ces défi scientifiques, cette thèse propose une abstraction de conception et de déploiement pour systèmes distribués dynamiquement adaptables, grâce au principe du Model@Runtime. Cette approche propose la construction d'une couche de réflexion distribuée qui permet la manipulation abstraite de systèmes répartis sur des nœuds hétérogènes. En outre, cette contribution introduit dans la modélisation des systèmes adaptables la notion de cohérence variable, permettant ainsi de capturer la divergence des nœuds de calcul dans leur propre conception. Cette couche de réflexion, désormais cohérente "à terme", permet d'envisager la construction de systèmes adaptatifs hétérogènes, regroupant des nœuds mobiles et embarqués dont la connectivité peut être intermittente. Cette contribution a été concrétisée par un projet nommé ''Kevoree'' dont la validation démontre l'applicabilité de l'approche proposée pour des cas d'usages aussi hétérogènes qu'un réseau de capteurs ou une flotte de terminaux mobiles.The growing complexity of modern IT systems has motivated the development of new paradigms (objects, components, services,...) to better cope with the critical size of their functionalities. Such systems are then built as a modular and dynamically adaptable compositions, allowing them to minimise their down-times while performing evolutions or fixes. In order to ensure non-functional properties (i.e. request latency) such systems are distributed across different computation nodes. Besides the added value in term of computational power (cloud), this distribution can also target nodes with dedicated properties such as mobile nodes and sensors (internet of things), physically close to users for interactions. Adapting a system requires knowledge about its current state in order to adapt its architecture to its evolving needs. A new state must be then disseminated to other nodes to synchronise them. Maintaining its consistency and sharing this state is a difficult task especially in case of sporadic connexions which lead to divergent state between sub-systems. To tackle these scientific problems, this thesis proposes an abstraction to design and deploy distributed adaptive systems following the Model@Runtime paradigm. From this abstraction, the proposed approach allows defining a distributed reflexive layer to manipulate heterogeneous distributed nodes. In particular, this contribution introduces variable consistencies in model definition and divergence in system conception. This reflexive layer, eventually consistent allows the construction of distributed adapted systems even on mobile nodes with intermittent connectivity. This work has been realized in an open source project named Kevoree, and validated on various distributed systems ranging from sensor networks to cloud computing.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF

    Taming Dynamically Adaptive Systems with Models and Aspects

    Get PDF
    International audienceSince software systems need to be continuously available under varying conditions, their ability to evolve at runtime is increasingly seen as one key issue. Modern programming frameworks already provide support for dynamic adaptations. However the high-variability of features in Dynamic Adaptive Systems (DAS) introduces an explosion of possible runtime system configurations (often called modes) and mode transitions. Designing these configurations and their transitions is tedious and error-prone, making the system feature evolution difficult. While Aspect-Oriented Modeling (AOM) was introduced to improve the modularity of software, this paper presents how an AOM approach can be used to tame the combinatorial explosion of DAS modes. Using AOM techniques, we derive a wide range of modes by weaving aspects into an explicit model reflecting the runtime system. We use these generated modes to automatically adapt the system. We validate our approach on a schizophrenic middleware for home automation currently deployed in Rennes metropolis
    • …
    corecore